Abstract

In this study, a computational fluid dynamics (CFD) approach is employed for heat transfer analysis of a ball grid array (BGA) package that is widely used in the modern electronics industry. Owing to the complicated geometric configuration of the BGA package, the submodel approach is used to investigate in detail the temperature distributions of thermal vias and solder balls. The effective thermal resistance of a BGA package has been successfully obtained from numerical simulations. An artificial neural network (ANN) is trained to establish the relationship between the geometry input and the thermal resistance output. The well-trained network is then coupled with the complex optimization method to search for the optimum design of the BGA package to achieve the lowest thermal resistance. The results of this study provide the electronic packaging industry with a reliable and rapid method for heat dissipation design of BGA packages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call