Abstract

Ball grid array (BGA) package styles use solder balls as electrical interconnects between packages and application boards. Solder balls are rigid and tend to fracture under thermal fatigue and/or shock loading. Metalized polymer spheres (MPS) offer a more compliant interconnect, compared to solder balls, thereby increasing the thermal cycling fatigue life. A reduction in thermal and electrical performance may be expected for MPS interconnects as a result of its higher thermal and electrical resistances. A 5% and an 8% increase in MPS thermal resistance was measured for a carrier array ball grid array (CABGA) package and a plastic ball grid array (PBGA) package, respectively, compared to eutectic solder balls. However, this small reduction was offset by large gains in the solder joint life. A 1.6 times increase in the mean thermal fatigue life was measured for a CABGA using MPS interconnects compared to eutectic solder balls. A first-order model showed that eutectic solder balls provide greater process margins, compared to MPS interconnects, due to the ball collapse during reflow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.