Abstract

Triple-negative breast cancer (TNBC), which has the highest mortality rate of all breast cancer, is in urgent need of a therapeutic that hinders the spread and growth of cancer cells. CRISPR genome editing holds the promise of a potential cure for many genetic diseases, including TNBC; however, its clinical translation is being challenged by the lack of safe and effective nonviral delivery systems for in vivo therapeutic genome editing. Here we report the synthesis and application of a noncationic, deformable, and tumor-targeted nanolipogel system (tNLG) for CRISPR genome editing in TNBC tumors. We have demonstrated that tNLGs mediate a potent CRISPR knockout of Lipocalin 2 (Lcn2), a known breast cancer oncogene, in human TNBC cells in vitro and in vivo. The loss of Lcn2 significantly inhibits the migration and the mesenchymal phenotype of human TNBC cells and subsequently attenuates TNBC aggressiveness. In an orthotopic TNBC model, we have shown that systemically administered tNLGs mediated >81% CRISPR knockout of Lcn2 in TNBC tumor tissues, resulting in significant tumor growth suppression (>77%). Our proof-of-principle results provide experimental evidence that tNLGs can be used as a safe, precise, and effective delivery approach for in vivo CRISPR genome editing in TNBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call