Abstract

Lack of highly expressed tumor target and ligands limits application of nano-medicine against triple-negative breast cancer (TNBC). Previous study reported that placenta-derived oncofetal chondroitin sulfate glycosaminoglycan chain (CSA) expressed on 90% of stage I-III invasive ductal breast carcinomas. Our study found the CSA anchor protein VAR2CSA derived small peptide plCSA had strong binding activity with TNBC cell lines and tumor tissue. Here, we combined the AIEgens TBZ-DPNA and therapy drug paclitaxel (PTX) to fabricate near-infrared fluorescence-guided nanodrug (plCSA-NP) to investigate its targeting and anti-tumor effect on TNBC. We synthesized and purified TBZ-DPNA with one step, measured optical properties and photoluminescence (PL) spectra. We prepared nanodrug plCSA-NP by encapsulating TBZ-DPNA and PTX and conjugating them with peptide plCSA. We evaluated plCSA-NP targeting activity by examining AIEdots fluorescence signal on TNBC cell lines and subcutaneous and lung metastatic mouse model. We assessed PTX delivery effect by cytotoxicity assay on TNBC line and tumor growth of subcutaneous and lung metastatic mouse models. PL spectra and TEM imaging results showed plCSA-NP had maximum emission feature at 718 nm and nearly monodispersed nanosphere with an average diameter of 70 nm. In vitro studies showed plCSA-NPs had high affinity and cytotoxicity with TNBC cell lines. In vivo subcutaneous and lung metastasis mouse studies showed plCSA-NPs accumulated on TNBC tumor tissue, and significantly prevented TNBC subcutaneous and lung metastasis tumor growth. In conclusion, we provide solid evidence for chondroitin sulfate targeting peptide plCSA guided nanodrug, exhibit good targeting efficiency and therapeutic effect against TNBC primary and lung metastatic tumor growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.