Abstract

Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer. This study investigated the molecular mechanism and influences of MIR503HG, miR-224-5p, and homeobox A9 (HOXA9) on TNBC cell growth and migration. Dual-luciferase reporter gene and RNA immunoprecipitation were performed to examine the regulation of MIR503HG, miR-224-5p, and HOXA9. Cell proliferation, apoptosis, migration, and invasion were evaluated by colony formation, flow cytometry, and Transwell assays. Finally, nude mice were employed to investigate the influence of MIR503HG on TNBC tumor growth. HOXA9 protein levels were detected by immunohistochemical staining. MIR503HG and HOXA9 expression were reduced in TNBC, while miR-224-5p was increased. Overexpression of MIR503HG or HOXA9 reduced the cell migration ability and proliferation and promoted apoptosis, and knockdown of MIR503HG or overexpression of miR-224-5p exhibited the opposite effects. Furthermore, MIR503HG promoted HOXA9 expression by inhibiting miR-224-5p. Overexpression of miR-224-5p reversed the effects of MIR503HG overexpression on TNBC cells, while overexpression of HOXA9 reversed the effect of MIR503HG knockdown. Additionally, an in vivo study proved that MIR503HG inhibited TNBC tumor growth via the miR-224-5p/HOXA9 axis. MIR503HG inhibited cell proliferation and promoted the apoptosis of TNBC cells via the miR-224-5p/HOXA9 axis, which may function as a novel target for the treatment of TNBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.