7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1073/pnas.2410210121
Copy DOIPublication Date: Dec 17, 2024 | |
License type: CC BY-NC-ND 4.0 |
Predator–prey interactions are a major driver of microbiome dynamics, but remain difficult to predict. While several prey traits potentially impact resistance to predation, their effects in a multispecies context remain unclear. Here, we leverage synthetic bacterial communities of varying complexity to identify traits driving palatability for nematodes, a main consumer of bacteria in soil. We assessed trophic interactions between four nematode species and 122 bacterial isolates, across a gradient of prey biodiversity ranging from single species to 50 species. Nematode size, a proxy for prey palatability, varied strongly with prey community composition and could be predicted by metabolic and morphological properties of the prey. However, the influence of prey traits on predators depended on biodiversity. Secondary metabolites drove palatability in monoculture, but this effect vanished under increasing prey biodiversity, where prey size became the dominant predictors of nematode size. Although idiosyncratic properties are often emphasized in the literatures, our results suggest that in biodiverse assemblages, the composition of available prey and their traits are more reliable predictors of predator–prey interactions. This study offers valuable insights into microbial ecology in the context of predator–prey interactions, as cryptic microbial responses can be guided by deductions based on generalizable biological traits.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.