Abstract

We show that every regular language defines a unique nondeterministic finite automaton (NFA), which we call “átomaton”, whose states are the “atoms” of the language, that is, non-empty intersections of complemented or uncomplemented left quotients of the language. We describe methods of constructing the átomaton, and prove that it is isomorphic to the reverse automaton of the minimal deterministic finite automaton (DFA) of the reverse language. We study “atomic” NFAs in which the right language of every state is a union of atoms. We generalize Brzozowski's double-reversal method for minimizing a deterministic finite automaton (DFA), showing that the result of applying the subset construction to an NFA is a minimal DFA if and only if the reverse of the NFA is atomic. We prove that Sengoku's claim that his method always finds a minimal NFA is false.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.