Abstract

Many difficult open problems in theoretical computer science center around nondeterminism. We study the fundamental problem of converting a given deterministic finite automaton (DFA) to a minimal nondeterministic finite automaton (NFA). Despite extensive work on finite automata, this fundamental problem has remained open. Recently, in [Ji91] we studied this problem and showed that this (and related) problems are computationally hard. Here we study the restriction of this problem to the case when the input DFA is over a one-letter alphabet. Even in this restricted case the problem is computationally hard even though our evidence of hardness is different from (and is weaker than) the standard ones such as NP-hardness. Let A → B denote the problem of converting a finite automaton of type A to a minimal finite automaton of type B. Our main result is that DFA → NFA, when the input is a unary cyclic DFA (a DFA whose graph is a simple cycle), is in NP but not in P unless NP ⊑ DTIME(nO(log n)). Our work was also motivated by the problem of finding structurally simple ‘normal forms’ of NFA's over a unary alphabet. We present some normal forms for minimal NFA's over a unary alphabet and present an application to lower bounds on the size complexity of an NFA. In fact, the normal form result is used in a nontrivial manner to show the NP membership result stated above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.