Abstract

We study the effect of free carriers on photoluminescence from modulation-doped self-assembled quantum dots. Exact diagonalization studies of up to N=8 electrons and a single exciton in InAs self-assembled dots, and a Hartree-Fock calculations for up to N=20 electrons, are carried out. The total spin and total angular momentum are found to oscillate with the number of electrons. The photoluminescence spectrum is calculated and the band-gap renormalization in zero-dimensional systems is discussed. The tendency of electrons in degenerate, partially filled electronic shells to maximize the total spin leads to a strong dependence of the spectrum on the number of electrons N, the magnetic field B, and the polarization of light.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.