Abstract
In the framework of the Richards–Wolf formalism, the spin–orbit conversion upon tight focusing of an optical vortex with circular polarization is studied. We obtain exact formulas which show what part of the total (averaged over the beam cross-section) longitudinal spin angular momentum is transferred to the total longitudinal orbital angular momentum in the focus. It is shown that the maximum part of the total longitudinal angular momentum that can be transformed into the total longitudinal orbital angular momentum is equal to half the beam power, and this maximum is reached at the maximum numerical aperture equal to one. We prove that the part of the spin angular momentum that transforms into the orbital angular momentum does not depend on the optical vortex topological charge. It is also shown that by virtue of spin–orbital conversion upon focusing, the total longitudinal energy flux decreases and partially transforms into the whole transversal (azimuthal) energy flow in the focus. Moreover, the longitudinal energy flux decreases by exactly the same amount that the total longitudinal spin angular momentum decreases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.