Abstract

Topological insulators have taken the condensed matter physics scenery by storm and captivated the interest among scientists and materials engineers alike. Surprisingly, this arena which was initially established and profoundly studied in electronic systems and crystals, has sparked a drive among classical physicists to pursue a wave-based analogy for sound, light and vibrations. In the latest efforts combining valley-contrasting topological sound with non-Hermitian ingredients, B. Hu et al. [Nature 597, 655 (2021)] employed thermoacoustic coupling in sonic lattices whose elementary building blocks are coated with electrically biased carbon nanotube films. In this contribution, we take a theoretical and numerical route towards understanding the complex acoustic interplay between geometry and added acoustic gain as inspired by the aforesaid publication. Besides complex bulk and edge states predictions and computations of mode-split resonances using whispering gallery configurations, we also predict an acoustic amplitude saturation in dependence on the activated coated elements. We foresee that our computational advances may assist future efforts in exploring thermoacoustic topological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.