Abstract

AbstractLarge deformations of soft materials are customarily associated with strong constitutive and geometrical nonlinearities that originate new modes of fracture. Some isotropic materials can develop strong fracture anisotropy, which manifests as modifications of the crack path. Sideways cracking occurs when the crack deviates to propagate in the loading direction, rather than perpendicular to it. This fracture mode results from higher resistance to propagation perpendicular to the principal stretch direction. It has been argued that such fracture anisotropy is related to deformation-induced anisotropy resulting from the microstructural stretching of polymer chains and, in strain-crystallizing elastomers, strain-induced crystallization mechanisms. However, the precise variation of the fracture behavior with the degree of crosslinking remains to be understood. Leveraging experiments and computational simulations, here we show that the tendency of a crack to propagate sideways in the two component Elastosil P7670 increases with the degree of crosslinking. We explore the mixing ratio for the synthesis of the elastomer that establishes the transition from forward to sideways fracturing. To assist the investigations, we construct a novel phase-field model for fracture where the critical energy release rate is directly related to the crosslinking degree. Our results demonstrate that fracture anisotropy can be modulated during the synthesis of the polymer. Then, we propose a roadmap with composite soft structures with low and highly crosslinked phases that allow for control over fracture, arresting and/or directing the fracture. The smart combination of the phases enables soft structures with enhanced fracture tolerance and reduced stiffness. By extending our computational framework as a virtual testbed, we capture the fracture performance of the composite samples and enable predictions based on more intricate composite unit cells. Overall, our work offers promising avenues for enhancing the fracture toughness of soft polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.