Abstract

The physical/chemical properties undergo significant transformations in the different states arising from phase transition. However, due to the lack of a dynamic perspective, transitional mesophases are largely underexamined, constrained by the high resource burden of first principles. Here, using molecular dynamics (MD) simulations empowered by the machine-learning potential, we proffer an innovative paradigm for phase transition: regulating the thermal transport properties via the transitional mesophase triggered by a uniaxial force field. We investigate the mechanical, electrical, and thermal transport properties of the two-dimensional carbon allotrope of Janus-graphene with strain-engineered phase transition. Notably, we found that the transitional mesophase significantly suppresses the thermal conductivity and induces strong anisotropy near the phase transition point. Through machine-learning-driven MD simulations, we achieved high-precision atomic-level simulations of Janus-graphene. The results show that thermal vibration-induced intermediate amorphous or interfacial phases induce strong and anisotropic interfacial thermal resistance. The investigation not only endows us with a novel perspective on mesophases during phase transitions but also enhances our holistic comprehension of the evolution of material properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.