Abstract

A critical but still poorly understood process in metal-oxide-semiconductor field-effect transistors (MOSFETs) is stress-induced changes in device threshold voltage, channel conductance, etc. which limit the operating lifetimes of the transistors. However, the degradation characteristics of deep-submicron MOSFETs, the widely demonstrated deuterium/hydrogen isotope effect, and the related results of scanning-tunneling microscopy (STM)-based depassivation experiments on silicon–vacuum interfaces are providing new insights into the degradation of MOSFETs via, at least, depassivation of the silicon-oxide interface. In this manuscript, we review the basic mechanisms of depassivation, suggest disorder-induced variations in the threshold energies for silicon–hydrogen/deuterium bond breaking as a possible explanation for observed sublinear time dependencies for degradation below t 0.5, and show that excitation of the vibrational modes of the bonds could play a significant role in the continuing degradation of deep-submicron MOSFETs operated at low voltages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.