Abstract

The modified Z-scan technique using the quasi-one-dimensional slit (QODS) beam for characterizing the third-order optical nonlinearity has been reported recently. In the present work, we investigate the effect of the finite length of the slit in the QODS beam Z-scan for the practical experimental conditions, and then give an empirical expression that allows the direct estimation of nonlinear refraction coefficient from the measured normalized peak-valley transmittance difference. In particular, we explore relatively in detail the influences of the sample imperfection on the Z-scan traces, such as the hollow hole of the sample and the nonuniform nonlinearity. Compared with the other Z-scan techniques, such as the top-hat and Gaussian-beam Z-scans, we find that the QODS beam Z-scan has the great improvement for the sample imperfections. The results suggest that the QODS beam Z-scan is a more promising and useful technique for characterizing the optical nonlinearity of an imperfect sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.