Abstract

Abstract Large scale MRCI calculations have been performed to study the electronic ground state and low-lying excited states of the NCS molecule and its isomers. The isomer CNS is found to be stable and linear. It lies 1.29 eV higher in energy than NCS, while CSN has a much higher energy and is unstable. The dissociation energy of the NCS isomer has been calculated to be 4.25 eV. The isomerization paths between the 2Π ground states of both isomers have been mapped by CASSCF and MRCI calculations. The barriers for the NCS → CNS isomerization in 2 A′ and 2 A″ symmetry have cyclic forms and the barrier heights have been calculated to be 2.71 eV and 2.44 eV, respectively (MRCI). For both isomers, the collinear dissociation paths to the (diatomic + atom) fragments have been investigated by CASSCF calculations. Spectroscopic data are given for the X 2Π ground state and for the A 2Σ+ state of CNS. The results are compared with the valence isoelectronic system NCO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call