Abstract
The potential energy curves have been investigated for the 41 lowest doublet and quartet electronic states in the 2s+1Λ± representation below 55,000cm–1 of the molecule BaF via CASSCF and MRCI (single and double excitations with Davidson correction) calculations. Twenty-five electronic states have been studied here theoretically for the first time. The crossing and avoided crossing of 20 doublet electronic states have been studied in the region 30,000–50,000cm−1. The harmonic frequency ωe, the internuclear distance Re, the rotational constant Be, the electronic energy with respect to the ground state Te, and the permanent and transition dipole moments have been calculated in addition to static dipole polarizability of the ground state. By using the canonical functions approach, the eigenvalue Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been calculated for the electronic states up to the vibrational level v=98. The comparison of these values with the theoretical results available in the literature shows a very good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.