Abstract

The S0 and S1 potential energy surfaces of pentalene were studied using MMVB—a hybrid force-field/parametrized valence bond (VB) method designed to simulate CASSCF calculations for ground and covalent excited states. The results were calibrated against full CASSCF calculations. Four distinct critical points were optimized: on S0, a C2h minimum (with alternating single and double bonds) and a D2h transition structure; and on S1, a D2h minimum and an adjacent S1/S0 conical intersection. A VB exchange density matrix (which is independent of the choice of the spin-coupled basis) was used to rationalize the S0 and S1 surface topologies. Craig defined pseudoaromatic molecules to be those with nontotally symmetric electronic ground states. For pentalene, this is true for both CASSCF and MMVB calculations: the CASSCF S0 transition structure is an open-shell B1x singlet, and the VB ground state is dominated by a spin-coupling which transforms as B1g. A C2v minimum and a D2h transition structure were located on the CASSCF S2 potential energy surface. This state cannot be represented by MMVB because of the importance of ionic configurations. The characters of the S1 S2 states of pentalene are shown to be reverse of the S1 and S2 states of benzene. © 1996 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call