Abstract

The objective of the paper is to analyse the effects of various geometrical and operating parameters on the liquid flow distribution in OF-cooled power transformers. Our investigation includes two cases: one with a simplified winding geometry and another that closely resembles the actual winding geometry. The analyses were carried out using computational fluid dynamics (CFD) and custom, internally developed thermo-hydraulic models. Our findings confirm that buoyancy forces rather than the pump drive the liquid flow within the windings of an OF-cooled power transformer. The results also show that the liquid flow distribution, which is influenced by the winding geometrical properties and liquid properties, has a significant impact on the hot-spot temperatures of the windings. The comparison between the results of the CFD simulations and the results of the simple model demonstrates a high level of agreement in calculating both the mass flow rates and temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call