Abstract
The variation of the distribution of the liquid flow in porous media during evaporation is still a puzzle. We resolve it with the pore network modeling approach. The distribution of the evaporation-induced liquid flow in a pore network composed of about 2.5 million pores is determined. The probability density function of the magnitude of the normalized liquid flow rate is obtained. For the low normalized liquid flow rate, the probability density function is power-lawlike. The power-law exponent depends on both the liquid saturation and the location of the moving meniscus in the main liquid cluster. The evaporation-induced liquid flow in the pores in the pore network can be correlated. Whether the liquid flow distributions in various zones in the pore network are similar or not relies significantly on the location of the moving meniscus in the main liquid cluster. The functions depicting the relation between the power-law exponent and the local liquid saturation for the zones adjacent to and away from the open side of the pore network are different. These findings from the pore scale studies provide insights into developing the accurate continuum model for evaporation in porous media.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have