Abstract

With the high proportion of distributed energy resource (DER) access in the distributed network, the tie-line power should be controlled and smoothed to minimize power flow fluctuations due to the uncertainty of DER. In this paper, a stochastic model predictive control (SMPC) method is proposed for tie-line power smoothing using a novel data-driven linear power flow (LPF) model that enhances efficiency by updating parameters online instead of retraining. The scenario method is then employed to simplify the objective function and chance constraints. The stability of the proposed model is demonstrated theoretically, and the performance analysis indicates positive results. In the one-day case study, the mean relative error is only 1.1%, with upper and lower quartiles of 1.4% and 0.2%, respectively, which demonstrates the superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.