Abstract

Cationic cluster Ti2P6+ has been studied within density functional theory. The structure of this cluster is predicted to be a slightly distorted tetragonal prism. The dissociation energy of this cationic cluster is higher than that of the known sandwich compound, [(P5)2Ti]2-, because of the different bonding in these two compounds. In Ti2P6+, the hybridization of P atoms of the ring is sp3. The bonding between the metal atoms and the P ring is mainly sigma-pi. While in [(P5)2Ti]2-, the P atoms take sp2 hybridization, the bonding between the metal atom and the rings is the typical pi-pi interaction. The electronic delocalization is another stabilizing factor for Ti2P6+. The nuclear independent chemical shift indicates that Ti2P6+ is a three-dimensional aromatic molecule. The predicted infrared and NMR help to identify the Ti2P6+ conformations in experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call