Abstract

Despite the fundamental importance of radii of atoms in molecules for numerous applications in physics and chemistry, comprehensive methods for their theoretical evaluation are still scarce. Here, we present quantum chemistry-based approaches for evaluation of radii of atoms in molecules and assess their robustness by studying the agreement of van der Waals and solvent-excluded surfaces constructed by them with reference molecular surfaces. By studying a large data set of 1235 molecules, it is shown that estimation of radii via effective and free atomic volumes can accurately take the dependence of atomic radii on the chemical environment into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.