Abstract

Abstract The equilibrium geometries and electronic structures of a series of SWCNTs doped with a silicon atom were studied by using density function theory (DFT). The most stable doping site of silicon predicted at B3LYP/6-31G(d,p) level was located near the boundary of the SWCNTs. The energy gaps of (3,3) C48, (3,3) C60 and (3,3) C72 were respectively decreased by 0.43, 0.25 and 0.14 eV after doping. Based on the B3LYP/6-31G(d) optimized geometries, the electronic spectra of the doped SWCNTs were computed using the INDO/CIS method. The first UV absorption at 973.9 nm of (5,5)-Si(L) (C59Si) compared with that at 937.5 nm of (5,5) (C60) was red-shifted. The 13C NMR spectra and nuclear independent chemical shifts (NICS) of the doped SWCNTs were investigated at B3LYP/6-31G(d) level. The chemical shift at 119.4 of the carbon atom bonded with the silicon atom in (3,3)-Si(L) (C59Si) in comparison with that at 144.1 of the same carbon atom in (3,3) (C60) moved upfield. The tendency of the aromaticity (NICS = −0.1) for (3,3)-Si(H) (C47Si) with respect to that of the anti-aromaticity (NICS = 6.0) for (3,3) (C48) was predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.