Abstract
This study aimed to investigate the insertion reaction of the polar monomers mediated by the cationic rare earth metal complex [(C5H5)Sc(NMe2CH2C6H4-o)]+ utilizing a combination of density functional theory (DFT) calculations and multivariate linear regression (MLR) methods. The chain initiation step of the insertion reaction could be described by the poisoning effect and the ease of monomer insertion, which could be represented via the DFT-calculated energy difference between σ- and π-coordination complexes (ΔΔE) and insertion energy barrier (ΔG≠), respectively. The results indicate that ΔΔE and ΔG≠ can be predicted by only several descriptors using multiple linear regression methods, with a root mean squared error (RMSE) of less than 2.5 kcal/mol. Furthermore, the qualitative analysis of the MLR models provided effective information on the key factors governing the insertion reaction chain initiation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have