Abstract

By combining a nonequilibrium Green's function analysis with a standard tight-binding model, we have investigated quantum transport through carbon nanotube devices. For finite-sized nanotubes, transport is dominated by resonant tunneling, with the conductance being strongly dependent on the length of the nanotubes. Turning to nanotube devices, we have investigated spin-coherent transport in ferromagnetic–nanotube–ferromagnetic devices and nanotube-superconducting devices. The former shows a significant spin valve effect, while the latter is dominated by resonant Andreev reflections. In addition, we discuss AC transport through carbon nanotubes and the role of photon-assisted tunneling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call