Abstract

Density function theory has been employed to study pyridine derivatives at the B3LYP/6‐31 G(d,p) and B3P86/6‐31 G(d,p) levels. The crystal structures were obtained by molecular mechanics methods. The heats of formation (HOFs) were predicted based on the isodesmic reactions. Detonation performance was evaluated by using the Kamlet–Jacobs equations based on the calculated densities and HOFs. The thermal stability of the title compounds was investigated by the bond dissociation energies and the energy gaps (ΔELUMO−HOMO) predicted. It is found that there are good linear relationships between detonation velocity, detonation pressure, and the number of nitro group. The simulation results reveal that molecule G performs similar to the famous explosive HMX and molecule D outperforms HMX. According to the quantitative standard of energetics and stability as high energy density materials, molecule D essentially satisfies this requirement. These results provide basic information for molecular design of novel high energetic density materials. Copyright © 2012 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.