Abstract

In this work, properties of polynitro-bridged pyridine derivatives were systemically studied at the B3LYP/6-31G(d) level. Gas-phase heats of formation (HOFs) for the designed compounds were calculated using isodesmic reactions, and their solid-phase HOFs were estimated using the Politzer approach. All designed compounds possess large solid-phase HOFs, larger than 700 kJ/mol. Based on the predicted crystal densities, solid-phase HOFs, and chemical energies, detonation properties were evaluated by means of Kamlet-Jacobs empirical equations. The results show that detonation velocities and pressures of all of the designed compounds are above 9.30 km/s and 40.00 GPa, respectively. In addition, bond dissociation energy (BDE) was employed to investigate their thermal stability. Considering solid-phase HOFs, detonation performance, and thermal stability, most of the designed compounds meet the requirements of high energy density materials (HEDMs).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call