Abstract

Abstract In this paper, we combine a theoretical study of the structural phases of CaWO 4 and SrWO 4 under high pressure along with the results of angle-dispersive X-ray diffraction (ADXRD) and X-ray absorption near-edge structure (XANES) measurements of both tungstates up to approximately 20 GPa. The theoretical study was performed within the ab initio framework of the density functional theory (DFT) using a plane-wave basis set and the pseudopotential scheme, with the generalized gradient approximation (GGA) for the exchange and correlation contribution to the energy. Under normal conditions, CaWO 4 and SrWO 4 crystallize in the scheelite structure. Our results show that in a hydrostatic environment, both compounds undergo a scheelite-to-fergusonite phase transition with increasing pressure. We present a comparison of the evolution of the structural parameters, equation of state, and of the features of the transition, finding an overall excellent agreement between the experimental and theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call