Abstract

The writhe of a knot in the simple cubic lattice [Formula: see text] can be computed as the average linking number of the knot with its pushoffs into four non-antipodal octants. We use a Monte Carlo algorithm to generate a sample of lattice knots of a specified knot type, and estimate the distribution of the writhe as a function of the length of the lattice knots. If the expected value of the writhe is not zero, then the knot is chiral. We prove that the writhe is additive under concatenation of lattice knots and observe that the mean writhe appears to be additive under the connected sum operation. In addition we observe that the mean writhe is a linear function of the crossing number in certain knot families.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.