Abstract

We propose improved versions of the standard diffusion Monte Carlo (DMC) and the lattice regularized diffusion Monte Carlo (LRDMC) algorithms. For the DMC method, we refine a scheme recently devised to treat nonlocal pseudopotential in a variational way. We show that such scheme-when applied to large enough systems-maintains its effectiveness only at correspondingly small enough time-steps, and we present two simple upgrades of the method which guarantee the variational property in a size-consistent manner. For the LRDMC method, which is size-consistent and variational by construction, we enhance the computational efficiency by introducing: (i) an improved definition of the effective lattice Hamiltonian which remains size-consistent and entails a small lattice-space error with a known leading term and (ii) a new randomization method for the positions of the lattice knots which requires a single lattice-space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.