Abstract

PT Trubaindo Coal Mining (PT TCM) is a coal mining company located in West Kutai, East Kalimantan.Demolition of overburden layer is done by drilling and blasting can effect results primarily blastingground vibration for highwall slope stability. Controlled blasting activities undertaken in 3000 Pit Block05 using linedrill. Vibration measurement data obtained from the reading apparatus is not necessarilya factor affecting vibration highwall slope stability, but with the direction of propagation horizontalvibrations that cause the decrease highwall slope stability. The maximum horizontal accelerationarising from blasting activities as parameters that play a role in the stability of the slope obtained bylinking the PPA with the equation Amax = 0.5167 x PPA. Therefore, to determine the effect of groundvibration due to blasting for highwall slope stability modeling needs to be done cross-section A-A ', BB',C-C ', D-D' and E-E '. Results of prediction equations safety factor value of each cross-section asfollows: Section of A-A’, FK = 5,1489 amax 6 – 32,719 amax 5 + 79,933 amax 4 – 93,928 amax 3 + 54,189 amax 2 – 13,898 amax + 1,30852 Section of B-B’, FK = 0,4838 amax 6 – 3,0058 amax 5 + 7,0149 amax 4 – 7,6767 amax 3 + 4,4953 amax 2 – 2,4997 amax + 1,44549 Section of C-C’, FK = 1,2021 amax 6 – 7,4203 amax 5 + 16,907 amax 4 – 17,239 amax 3 + 8,0429 amax 2 – 2,8212 amax + 1,3628 Section of D-D’, FK = 5,279a amax 6 – 33,941 amax 5 + 84,105 amax 4 – 100,68 amax 3 + 59,648 amax 2 – 15,946 amax + 1,57907 Section of E-E’, FK = -1,9442 amax 6 + 11,453 amax 5 – 24,289 amax 4 + 20,677 amax 3 – 2,7313 amax 2 – 4,8741 amax + 1,65573The calculation results of critical maximum horizontal acceleration for every cross-section varies asthe follows: Section of A-A’, amax-critical = 0,007 g Section of B-B’, amax-critical = 0,118 g Section of C-C’, amax-critical = 0,062 g Section of D-D’, amax-critical = 0,025 g Section of E-E’, amax-critical = 0,09 gVariation is influenced by the thickness of the layer of top soil (top soil) and any cross-sectionalgeometry highwall slope.

Highlights

  • This research was conducted by analyzing the factors that influence the magnitude of ground vibrations due to blasting of the highwall slope stability is like blasting geometry, the nature of the explosives used and the distance to the vibration monitoring sites

  • Of the 32 monitoring data obtained blasting prediction equation to determine the relationship of the ground shaking following highwall slope stability 1

  • Of the 32 vibration monitoring data obtained Peak Particle Velocity (PPV) formulation with scaled distance (SD) method using non-linear regression analysis of power in Pit 3000 Block 05 and the formulation of the PPV = 90,896(SD)-0896 2

Read more

Summary

Preleminary

TCM) is a private company engaged in coal mining. This study is expected to generate design blasting geometry which suitable in Pit 3000 Block 05 with a max which secure against highwall slope stability. 1. Determine the factors that influence the results of blasting ground vibration for highwall slope stability. 3. Determine the value limit of a maxthat affect the value of the safety factor for highwall slope. 4. The safety factor equation for value prediction is derived from the design of the final pit in 2014. 1. The results of this study are expected to be used as research material for comparative studies related to ground vibrations due to blasting of the highwall slope stability. 2. To be the basis for determining the company's policy in preparing planning design of blasting geometry and geometry of the slopes

Observation
The Result Of Observation
Discussion
Mei6th 2015 Interburden East
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.