Abstract
The potential impact of climate change on eukaryotes, including humans, has been relatively well described. In contrast, the contribution and susceptibility of microorganisms to a changing climate have, until recently, received relatively less attention. In this review, the importance of microorganisms in the climate change discourse is highlighted. Microorganisms are responsible for approximately half of all primary production on earth, support all forms of macroscopic life whether directly or indirectly, and often persist in “extreme” environments where most other life are excluded. In short, microorganisms are the life support system of the biosphere and therefore must be included in decision making regarding climate change. Any effects climate change will have on microorganisms will inevitably impact higher eukaryotes and the activity of microbial communities in turn can contribute to or alleviate the severity of the changing climate. It is of vital importance that unique, fragile, microbial ecosystems are a focus of research efforts so that their resilience to extreme weather events and climate change are thoroughly understood and that conservation efforts can be implemented as a response. One such ecosystem under threat are the evolutionarily significant microbial mats and stromatolites, such as those present in Shark Bay, Western Australia. Climate change models have suggested the duration and severity of extreme weather events in this region will increase, along with rising temperatures, sea levels, and ocean acidification. These changes could upset the delicate balance that fosters the development of microbial mats and stromatolites in Shark Bay. Thus, the challenges facing Shark Bay microbial communities will be presented here as a specific case study.
Highlights
Microorganisms are recognised as having an essential role in the health and functions of humans, animals, and the global ecosystem itself [1]
An example of a particular ecosystem that is under the threat of climate change is microbial mats and stromatolites, such as those found in Shark Bay, Western Australia
Laminar, organo-sedimentary, microbial ecosystems, composed of microorganisms usually embedded in an organic biofilm matrix in which extracellular polymeric substances (EPS) provide both functional and structural integrity by forming a cohesive structure [39]
Summary
Microorganisms are recognised as having an essential role in the health and functions of humans, animals, and the global ecosystem itself [1]. Moving forward, it is critical that microbial community composition is included in ecosystem modelling so that more accurate projections of climate change effects can be disseminated, leading to heightened public awareness and more informed policy-making [2,7]. This increased awareness is evident by a “call to arms” discussed in recent reviews [2,4], with many scientists urging for the improvement of societal microbiology literacy for this reason
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.