Abstract

The increasing intensity and frequency of extreme weather events resulting from climate change have led to grid outages and other negative consequences. To ensure the resilience of buildings which serve as primary shelters for occupants, resilient strategies are being developed to improve their ability to withstand these extreme events (e.g., building upgrades and renewable energy generators and storage). However, a crucial step towards creating a resilient built environment is accurately estimating building performance during such conditions using historical extreme climate change-induced weather events. To conduct Building Performance Simulation (BPS) in extreme conditions, such as weather events induced by climate change, it is essential to utilize Actual Meteorological Year (AMY) weather files instead of Typical Meteorological Year (TMY) files. AMY files capture the precise climatic conditions during extreme weather events, enabling accurate simulation of such scenarios. These weather files provide valuable data that can be used to assess the vulnerabilities and resilience of buildings to extreme weather events. By analyzing past events and their impacts using BPS tools, we can gain insights into the specific weaknesses and areas that require improvement. This approach applies to both existing buildings needing climate change-resilient retrofits and new building designs that must be compatible with future climatic conditions. Moreover, the intensification and frequency increase of these extreme weather events makes developing adaptation and resilient-building measures imperative. This involves understanding the potential losses that households may experience due to the intensification of extreme events and developing farsighted coping strategies and climate-proof resilient-building initiatives. However, addressing the knowledge gap caused by the absence of an AMY weather file dataset of extreme events is essential. This will allow for accurate BPS during past extreme climate change-induced weather events. To fill this gap, this article introduces a comprehensive .epw format weather file dataset focusing on historical extreme weather events in Canada. This collection encompasses a diverse array of past extreme climate change occurrences in various locations, with potential for future expansion to include additional locations and countries. This dataset enables energy simulations for different types of buildings and considers a diverse range of historical weather conditions, allowing for better estimation of thermal performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.