Abstract

In plants, the perception of cell wall fragments initiates signal transduction cascades that activate the immune response. Previous research on early protein dynamics induced by oligogalacturonides (OGs), pectin fragments acting as damage-associated molecular patterns (DAMPs), revealed significant phosphorylation changes in several proteins. Among them, the subunit C of the vacuolar H+-ATPase, known as DE-ETIOLATED 3 (DET3), was selected to elucidate its role in the OG-triggered immune response. The Arabidopsis det3 knockdown mutant exhibited defects in H2O2 accumulation, mitogen-activated protein kinases (MAPKs) activation, and induction of defense marker genes in response to OG treatment. Interestingly, the det3 mutant showed a higher basal resistance to the fungal pathogen Botrytis cinerea that, in turn, was completely reversed by the pre-treatment with OGs. Our results suggest a compromised ability of the det3 mutant to maintain a primed state over time, leading to a weaker defense response when the plant is later exposed to the fungal pathogen. Using fluorescently labelled OGs, we demonstrated that endocytosis of OGs was less efficient in the det3 mutant, implicating DET3 in the internalization process of OGs. This impairment aligns with the observed defect in the priming response in the det3 mutant, underscoring that proper internalization and signaling of OGs are crucial for initiating and maintaining a primed state in plant defense responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.