Abstract

Early treatment of bloodstream infections with appropriate, definitive antimicrobial therapy has proven to reduce mortality, length of hospital stay, and healthcare costs. Culture-based testing methods require up to five days for final pathogen identification and susceptibility reporting, forcing use of broad spectrum empiric therapy. Recently, multiple rapid microbiological and molecular testing methods have been developed that reduce the time to identify the pathogen and susceptibility, allowing optimal antimicrobial therapy to be prescribed earlier. Real-time polymerase chain reaction and gene microarray have been described in literature, yet only peptide nucleic acid fluorescent in-situ hybridization has published data justifying its use based on clinical outcomes and cost savings. Target enriched multiplex polymerase chain reaction was developed to identify both the pathogen and multiple genes associated with resistance from blood within 6 hours and this methodology was studied in our hospital to assess effectiveness at optimizing antimicrobials in staphylococcal bloodstream infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.