Abstract

Biodegradable polyesters represent an advanced alternative to polyolefin plastics in various applications. Polybutylene adipate terephthalate (PBAT) can compete with polyolefins in terms of their mechanical characteristics and melt processing conditions. The properties of PBAT depend on the molecular weight, dispersity, and architecture of the copolymer. Long-chain branching (LCB) of the PBAT backbone is an efficient method for the improvement of the copolymer characteristics. In the present work, we studied branching agents (BAs) 1–7 of different structures in the two-stage polycondensation of 1,4-butanediol, dimethyl terephthalate, and adipic acid and investigated the composition and melt rheology of the copolymers. According to the results of the research, 1,1,1-tris(hydroxymethyl)ethane 2 and 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoic acid 5 outperformed glycerol 1 as BAs in terms of shear thinning behavior and viscoelasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.