Abstract

AbstractSpray‐dried materials are being used increasingly in industries such as food, detergent and pharmaceutical manufacture. Spray‐dried sodium carbonate is an important product that has a great propensity to cake; its moisture‐sorption properties are very different to the crystalline and amorphous species, with a great affinity for atmospheric moisture. This work demonstrates how the noncontact surface analysis of individual particles using atomic force microscopy can highlight the possible mechanisms of unwanted agglomeration. The nondestructive nature of this method allows cycling of localised humidity in situ and repeated scanning of the same particle area. The resulting topography and phase scans showed that humidity cycling caused changes in the distribution of material phases that were not solely dependent on topographical changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.