Abstract

Quantitative analysis of noisy electron spectrum images requires a robust estimation of the underlying background signal. We demonstrate how modern data compression methods can be used as a tool for achieving an analysis result less affected by statistical errors or to speed up the background estimation. In particular, we demonstrate how a multilinear singular value decomposition (MLSVD) can be used to enhance elemental maps obtained from a complex sample measured with energy electron loss spectroscopy. Furthermore, the usage of vertex component analysis (VCA) for a basis vector centered estimation of the background is demonstrated. Arising computational benefits in terms of model accuracy and computational costs are studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.