Abstract

Quantitative interpretation of transmission electron microscopy (TEM) data of crystalline specimens often requires the accurate knowledge of the local crystal orientation. A method is presented which exploits momentum-resolved scanning TEM (STEM) data to determine the local mistilt from a major zone axis. It is based on a geometric analysis of Kikuchi bands within a single diffraction pattern, yielding the center of the Laue circle. Whereas the approach is not limited to convergent illumination, it is here developed using unit-cell averaged diffraction patterns corresponding to high-resolution STEM settings. In simulation studies, an accuracy of approximately 0.1 mrad is found. The method is implemented in automated software and applied to crystallographic tilt and in-plane rotation mapping in two experimental cases. In particular, orientation maps of high-Mn steel and an epitaxially grown La0.7Sr0.3MnO3-SrTiO3 interface are presented. The results confirm the estimates of the simulation study and indicate that tilt mapping can be performed consistently over a wide field of view with diameters well above 100 nm at unit cell real space sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.