Abstract

NiFe2O4 is one of the most abundant and inexpensive spinels; however, its activity toward the oxygen reduction reaction (ORR) is relatively low. For the first time, Co-substituted Fe partly of the NiFe2O4 electrocatalyst was studied to improve the intrinsic activity of ORR. Spinel-type NiFe2-xCoxO4/C electrocatalysts (x = 0, 0.25, 0.5 and 0.75) were synthesized by the hydrothermal method without further calcination. The well-crystallized NiFe2O4/C nanoparticles remained in a single phase after Co-substituting with sizes of 15–20 nm, characterized by TEM, SEM, XRD, and FTIR. XPS observes mixed valence states in the NiFe2-xCoxO4/C structure are observed, which has a beneficial effect on ORR. Furthermore, NiFe2-xCoxO4/C nanoparticles (x = 0.25, 0.5 and 0.75) show advanced ORR performance over NiFe2O4, particularly, the specific mass activity of NiFe1.75Co0.25O4/C is three times higher than that of NiFe2O4, also, with improved stability. After 4,000s, the NiFe1.75Co0.25O4/C electrocatalyst retained 84% of its initial current density, while the NiFe2O4/C electrocatalyst retained only 38%. The results revealed that Co substitutions have remarkably increased the intrinsic activity of the NiFe2O4 electrocatalyst for ORR by altering the structure, redistributing cations, and improving electrical conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call