Abstract

Interferon gamma (IFN-γ) induces an endothelial proimmunogenic phenotype through the JAK/STAT1 pathway, which can shape the activation of alloreactive leukocytes in transplant rejection. In immune cells, the DNA-binding protein B cell lymphoma 6 (BCL6) controls the transcription of inflammatory genes. This study tested if BCL6 modulates IFN-γ-induced gene expression in endothelial cells. In vitro, BCL6 was IFN-γ-inducible in primary human endothelium, along with CXCR3 chemokines and human leukocyte antigen (HLA). BCL6, HLA II, and CXCL9 were also increased in human cardiac transplants during acute rejection. Knockdown of BCL6 augmented, whereas overexpression and BTB domain inhibitors (BCL6-BTBi) suppressed, HLA II and CXCR3 chemokine expression but not HLA I. Further, BCL6 had a greater effect on HLA-DR and DP but was less involved in regulating HLA-DQ expression. The effect correlated with BCL6 binding motifs in or near affected genes. The BCL6 DNA recognition sequence was highly similar to that of STAT1, and BTBi reduced STAT1’s transcriptional activity in vitro. Our results show for the first time that BCL6 selectively controls IFN-γ-induced endothelial gene expression, advancing our understanding of the endogenous mechanisms regulating donor immunogenicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call