Abstract
The European Union's ban on animal testing for cosmetic products and their ingredients, combined with the lack of validated animal-free methods, poses challenges in evaluating their potential repeated-dose organ toxicity. To address this, innovative strategies like Next-Generation Risk Assessment (NGRA) are being explored, integrating historical animal data with new mechanistic insights from non-animal New Approach Methodologies (NAMs). This paper introduces the TOXIN knowledge graph (TOXIN KG), a tool designed to retrieve toxicological information on cosmetic ingredients, with a focus on liver-related data. TOXIN KG uses graph-structured semantic technology and integrates toxicological data through ontologies, ensuring interoperable representation. The primary data source is safety information on cosmetic ingredients from scientific opinions issued by the Scientific Committee on Consumer Safety between 2009 and 2019. The ToxRTool automates the reliability assessment of toxicity studies, while the Simplified Molecular Input Line Entry System (SMILES) notation standardizes chemical identification, enabling in silico prediction of repeated-dose toxicity via the implementation of the Organization for Economic Co-operation and Development Quantitative Structure-Activity Relationship Toolbox (OECD QSAR Toolbox). The ToXic Process Ontology, enriched with relevant biological repositories, is employed to represent toxicological concepts systematically. Search filters allow the identification of cosmetic compounds potentially linked to liver toxicity. Data visualization is achieved through Ontodia, a JavaScript library. TOXIN KG, filled with information for 88 cosmetic ingredients, allowed us to identify 53 compounds affecting at least one liver toxicity parameter in a 90-day repeated-dose animal study. For one compound, we illustrate how TOXIN KG links this observation to hepatic cholestasis as an adverse outcome. In an ab initio NGRA context, follow-up in vitro studies using human-based NAMs would be necessary to understand the compound's biological activity and the molecular mechanism leading to the adverse effect. In summary, TOXIN KG emerges as a valuable tool for advancing the reusability of cosmetics safety data, providing knowledge in support of NAM-based hazard and risk assessments. Database URL: https://toxin-search.netlify.app/.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have