Abstract

We study the system of hard-core bosons (HCB) with two species in the three-dimensional lattice at finite temperatures. In the strong-correlation limit, the system becomes the bosonic t-J model, that is, the t-J model of “bosonic electrons”. The bosonic “electron” operator Bxσ at the site x with a two-component spin σ(= 1, 2***) is treated as a HCB operator, and represented by a composite of two slave particles; a spinon described by a Schwinger boson (CP1 boson) zxσ and a holon described by a HCB field φx as Bxσ = φ†xzxσ.*** This φx is again represented by another CP1 quasi-spinon operator ωxa*** (a = 1, 2***). The phase diagrams of the resulting double CP1 system obtained by Monte Carlo simulations involve first-order and second-order phase boundaries. We present in detail the techniques and algorithm to reduce the hysteresis and locate the first-order transition points.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.