Abstract

The thermodynamic stabilities and heats of formation of tricyclic C12H12 tetraenes 1–6 as well as of a truncated tetrahedron hydrocarbon isomer 7 were computed by various density functional methods in conjunction with a polarized double-ζ basis set. As the DFT stabilities of 1–7 differ significantly from the MM2, MM3, MM4 and AM1 results, we conclude that these empirical and semiempirical methods are inappropriate to study such polycyclic hydrocarbons. Compound 6 with only endocyclic double bonds, a potential synthetic precursor of 7, is found to be less favorable energetically than the other isomers. Although the Csp3–Csp3 single bonds in 1–6 are rather long (1.601 to 1.620 A) due to a combination of ring strain and hyperconjugation, the small nucleus-independent chemical shift (NICS) values of 1 and 6 confirm the expectation that cyclic electron delocalization is lacking. In contrast, NICS is unusually large in the cage center (–14.6) of 7, but this is due to the cumulative diatropic influence of the four cyclopropane rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.