Abstract

Using density functional theory methods, the phonon density of states, Helmholtz free energy, internal energy, and entropy of ferroelectric and paraelectric phases are investigated. The temperature dependence of the free energy indicates that vibrational entropy contributes to the destabilization of the ferroelectric phase. The vibrational entropy of Sb, S, and Br atoms is attributed to the stabilization of ferroelectric SbSBr at the temperature T c. Calculations indicated that SbSBr in ferroelectric phase become more stable than in paraelectric phase at temperatures lower than 22.8 K. The calculated temperature of ferroelectric phase transition is in good agreement with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call