Abstract
A first-principle method is used to calculate phonon density of states, Helmholtz free energy, internal energy, and entropy for ferroelectric and paraelectric SbSI. Theoretical phase transition temperature was obtained using the difference of the Helmholtz free energy, internal energy, and entropy term between ferroelectric and paraelectric phases on temperature. The obtained value is in reasonable agreement with the experimental second-order phase transition temperature Tc2 = 233 K.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.