Abstract

Horizontal wet-chemical etching of silicon wafers in an HF/HNO3/H2SiF6 mixture is the most widely-used technique to texturize multi-crystalline silicon wafers for solar cell production. For the first time, the etch rates were determined separately for the upper and lower side during the horizontal texturization and the their different morphologies. The dependency of the surface morphology from the etch rate and etch depth is proven. Furthermore, the influence of the temperature and stirring rates on the morphological development for the upper and lower side of the wafer were examined. From temperature-dependent measurements, activation energies in the range from 17kJ/mol to 40kJ/mol on the upper side and from 23kJ/mol to 40kJ/mol on the lower side dependent from the etching time were determined. The observed results reveal a connection between the etch depth, the agitation of the etch solution, the morphology and the reflectivity of the separate wafer sides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call