Abstract

Temperature dependences of the photovoltaic characteristics of (p)a-Si/(i)a-Si:H/(n)c-Si singlecrystalline- silicon based heterojunction-with-intrinsic-thin-layer (HIT) solar cells have been measured in a temperature range of 80–420 K. The open-circuit voltage (VOC), fill factor (FF) of the current–voltage (I–U) characteristic, and maximum output power (Pmax) reach limiting values in the interval of 200–250 K on the background of monotonic growth in the short-circuit current (ISC) in a temperature range of 80–400 K. At temperatures below this interval, the VOC, FF, and Pmax values exhibit a decrease. It is theoretically justified that a decrease in the photovoltaic energy conversion characteristics of solar cells observed on heating from 250 to 400 K is related to exponential growth in the intrinsic conductivity. At temperatures below 200 K, the I–U curve shape exhibits a change that is accompanied by a drop in VOC. Possible factors that account for the decrease in VOC, FF, and Pmax are considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call