Abstract

Heterojunction with intrinsic thin-layer (HIT) solar cells attract attention due to their high open circuit voltage and stable performance. However, short circuit current density is difficult to improve due to light losses of transparent conductive oxide and hydrogenated amorphous silicon passivation (a-Si:H) layer and low absorption coefficient of crystalline silicon (c-Si). Silicon germanium alloy (Si/Si1-xGex) quantum wells and quantum dots are capable of improving low light utilization by strong optical absorption in the infrared region. In this article, opto-MoS2of the HIT solar cells integrated with Si/Si1-xGex quantum wells (HIT-QW) as a surface absorber are investigated by numerical simulation with Technology Computer Aided Design (TCAD). The influences of germanium content on the MoS2of HIT solar cells with long carrier lifetimes of Si1-xGex layers (p*) and defect-free a-Si:H/c-Si interface are investigated at first. The simulation results indicate that optical utilization in the infrared region is enhanced with the increase of germanium fraction, while open circuit voltage degrades due to the decreasing of the energy band gap of Si1-xGex, radiative recombination and auger recombination mechanism in the Si/Si1-xGex quantum wells. And the conversion efficiency reaches a maximum value at a germanium fraction of 0.25 then drops distinctly. When the germanium fraction increases from 0 to 0.25, the short circuit current density increases from 34.3 mA/cm2 to 34.8 mA/cm2, while the open circuit voltage declines from 749 mV to 733 mV. Hence, the conversion efficiency increases from 21.5% to 21.7% due to the fact that the enhancement of short circuit current density compensates for the reduction of open circuit voltage. When the germanium content increases to more than 50%, a serious open circuit voltage loss of more than 130 mV associated with the energy band gap loss of Si1-xGex arises in the HIT-QW solar cells, which indicates that the dominating carrier transport mechanism changes from shockley diffusion to recombination in the Si/Si1-xGex quantum wells. Subsequently, the influences of interface defects at a-Si:H/c-Si interface and bulk recombination centers in the Si/Si1-xGex quantum wells are discussed. Both interface holes at a-Si:H/c-Si interface and bulk holes in Si1-xGex quantum wells can be recombined through the interface defects at a-Si:H/c-Si interface and bulk recombination centers in the Si/Si1-xGex quantum wells, respectively, which restricts the position of hole fermi level in the open circuit condition. When the germanium fraction increases, the influence of interface defects at a-Si:H/c-Si interface becomes weak on the degradation of open circuit voltage compared with the significant influence of the bulk trap centers. Moreover, p* of longer than 510-5 s is necessary for the retention of electrical performance of HIT-QW solar cells by the simulation. Based on this research, high-efficiency HIT solar cells can be achieved by incorporating high-quality Si/Si0.75Ge0.25 quantum wells, which also requires the impactful passivation of a-Si:H/c-Si interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.